
White-Box Program Tuning
Wen-Chuan Lee∗, Yingqi Liu∗, Peng Liu∗, Shiqing Ma∗, Hongjun Choi∗, Xiangyu Zhang∗, Rajiv Gupta‡

∗Purdue University, USA
‡University of California, Riverside, USA

Abstract—Many programs or algorithms are largely parame-
terized, especially those based on heuristics. The quality of the
results depends on the parameter setting. Different inputs often
have different optimal settings. Program tuning is hence of great
importance. Existing tuning techniques treat the program as
a black-box and hence cannot leverage the internal program
states to achieve better tuning. We propose a white-box tuning
technique that is implemented as a library. The user can compose
complex program tuning tasks by adding a small number of
library calls to the original program and providing a few
callback functions. Our experiments on 13 widely-used real-world
programs show that our technique substantially improves data
processing results and outperforms OpenTuner, the state-of-the-
art black-box tuning technique.

Index Terms—white-box tuning; black-box tuning; parameter
tuning; parameterized program

I. INTRODUCTION

More and more highly parameterized programs or algo-
rithms are being used to solve different problems. Their
complexity is also growing at an enormous pace, involving
more and more computation stages. A prominent challenge
for using these programs or algorithms is that the user has
to configure a set of parameters beforehand. More impor-
tantly, the optimal configuration is mostly dependent on the
specific input. Different inputs require different configurations
to achieve the optimal results.

For instance, the results of K-means [46], a popular data
clustering algorithm, heavily depends upon the choice of
parameter K. It specifies the number of clusters into which
the user wants to partition the input data. A lot of research
[29, 53, 54, 73, 74] has aimed at automatically deriving
the appropriate k value from the input. However, there is
no general solution for finding K. Another example relates
to object detection in satellite image processing [16]. The
parametrized algorithm processes a large volume of images
in a time unit to generate the detection results. However, the
parameter configuration that yields the best results for one
image may produce suboptimal results for another image (e.g.,
missing objects and broken edges). Consider, Canny [20],
one of the most widely used image processing algorithms
that detect edges. It is a multi-staged algorithm with three
important parameters upon which Canny’s results heavily
depend. According to [33], each input image may require a
specific parameter setting to produce the best edge detection
result. Fig. 1 shows the results on two different images using
Canny. The left two are the original images. The other images
show the results from two respective parameter configurations.
Observe that configuration (0.6, 0.5, 0.9) produces the better

result for the airplane whereas configuration (1.8, 0.2, 0.7)
produces the better result for the trashcan. Thus, automated
parameter tuning becomes critical in data processing as manual
tuning is not realistic.

Airplane (0.6, 0.5, 0.9) (1.8, 0.2, 0.7)

Trashcan (0.6, 0.5, 0.9) (1.8, 0.2, 0.7)

Fig. 1. Canny’s results with different parameters

A. Key Observation of Staged Computation Paradigm

By observing Canny and many other real world parame-
terized programs, we find that they typically follow the staged
computing paradigm, i.e., they consist of multiple computation
stages such that each stage has a unique set of tunable
parameters.

B. Existing Work

Multiple frameworks were proposed to automate program
tuning, among which OpenTuner [7] is the state-of-the-art.
Oblivious of the staged computation paradigm, these frame-
works treat the computation as a black-box. Guided by a
user-provided scoring function of the final result, they sample
the parameter space to find the best parameter configuration.
Internally, they adopt stochastic algorithms [40, 64] or genetic
algorithms [48] as the search strategy. While the above frame-
works have achieved a certain level of success, they suffer
greatly from poor performance due to the inherent limitations
of the black-box designs:

• All parameters need to be tuned and set in each configura-
tion, leading to an exponential number of configurations.

• A full execution accounts for the sampling of a single
parameter configuration. Note that the full execution
typically needs to load a large corpus of data and conduct
lengthy preprocessing, which are very time consuming.

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Research Papers

122

Fig. 2. Execution models of black-box and white-box tuning

C. Our Work

In this paper, we propose a novel white-box tuning frame-
work called WBTuner. It is aware of the staged computation
paradigm and tunes each stage independently. Specifically,
WBTuner spawns multiple processes to sample different pa-
rameter configurations involved in a stage. At the end of
each stage, it aggregates the sampled internal results of that
stage through a default or custom aggregation strategy. The
aggregation step reduces the spawned processes to fewer
or one process (with desirable internal results achieved by
tuning), which will proceed to tune the next stage. Intuitively,
the aggregation strategy may either select the min/max value
from the internal results (from various processes) or take he
average value (Sec. IV-C).

Consider an application with n stages of computation,
each stage having a unique parameter to tune. The parameter
domain has m unique values. Initially, WBTuner spawns m
sampling processes to cover the m configurations of the
first stage. Assume only one of the processes in a stage
is selected to proceed to the next stage (after aggregation).
WBTuner needs only m sampling processes in each stage.
Overall, WBTuner only needs to cover m∗n configurations and
achieves so with a single full execution that keeps at most m
live processes in any stage. Comparatively, OpenTuner needs
to cover the mn unique parameter configurations with mn full
execution instances. Fig. 2 illustrates the comparison.

D. Properties

WBTuner features the following properties.

• By leveraging the independence between stages, WB-
Tuner needs to sample much fewer parameter configu-
rations than OpenTuner. In the above example, it needs
to sample only m ∗ n configurations, while OpenTuner
needs to sample mn configurations.

• Wasteful computation caused by poor internal results in
an early stage can be terminated through the aggregation
step for efficiency/efficacy. This is infeasible in black-box
tuning.

• A full execution is reused for sampling different config-
urations and tuning different stages. Through the reused
execution, WBTuner greatly reduces the number of full
execution instances needed. Note that every full execution
may need to load and pre-process a large corpus of data,
which only have to be done once in WBTuner.

E. Contributions

The following shows our key contributions.
• We propose a novel white-box tuning technique. As

discussed above, it features a set of salient properties
compared to the existing black-box tuning.

• We develop a prototype WBTuner in the form of a
library that offers the users flexible access to internal
program states. The realization of the library incurs great
challenges related to process management and data store
management. Our technique addresses these problems
through a novel runtime transparently to the end users.
Besides, we formalize the semantics of the runtime exe-
cution.

• We release our implementation of WBTuner for the
community at [71]. We use WBTuner to tune 12 widely
used parameterized programs. Our experiments show
that WBTuner substantially improves their results with
reasonable overhead. The comparison with OpenTuner
shows that OpenTuner takes 3.08X time to achieve the
same results under a single core environment and 4.67X
when multiple cores are used.

• We use WBTuner to tune the parameters of a complex
drone controller software (278K LOC) to mimic the be-
havior of a different controller with a better configuration
(Sec. V-B5). Changing the configurations manually is
infeasible because the numbers of parameters are large
(612 and 426 respectively) and the meanings of these pa-
rameters are quite different between the two controllers.

II. OVERVIEW OF WHITE-BOX TUNING FRAMEWORK

We present the interface and show how to use it to tune
Canny, a popular image processing algorithm. Due to space
limitation, detailed tuning examples and complete documen-
tations can be found in [71].

A. User Interface

WBTuner provides the user with an intuitive interface,
which consists of multiple tuning primitives shown in Fig.
3. They are essentially library calls in the same programming
language as the original program, rather than annotations in
some specification language. We use the following Canny
example to intuitively explain how to use the interface.

Library Calls :
@sampling(n, cbStrgy) |
@aggregate(x, cbAggr) |
@sample(x, cbDist) | @expose(x) |
@load(x) | @loadS(x, i) | @split() |
@sync(cbBarrier) | @check(cbChk)

CallBack : cbStrgy, cbAggr, cbDist, cbChk, cbBarrier

Fig. 3. Primitives

B. Running Example

Canny has four stages: the Gaussian smoothing stage (line
22 in Fig. 4) which removes noise from the input image,

123

the image transformation stage (line 30) which performs non-
maximal suppression, the edge traversal stage (line 37) which
leverages the hysteresis analysis to track all potential edges
in the image, and the visualization stage which visualizes the
final results.

It takes three parameters: sigma, low, and high. Specif-
ically, the Gaussian smoothing stage relies on the parame-
ter sigma and the edge traversal stage relies on the low
and high thresholds. Based on our observation, Canny is
a representative of real world data processing applications,
which usually follow the staged computing paradigm, i.e., they
consist of multiple computation stages such that each stage has
a unique set of tunable parameters.

Fig. 4 shows how the interface is used (symbol @ is
replaced with wbt). Primitive wbt sampling() (line 20)
denotes the start of a sampling code region. It specifies the
number of samples that should be collected within this region
and a callback function that implements a sampling strategy.
WBTuner has a few built-in callbacks including random in
this example. Primitive wbt aggregate() (line 27) marks the
end of a sampling region. It specifies a callback function
(e.g., AggregateGaussian()) that aggregates the values
of sImage across sample runs. Primitive wbt sample() (line
21) indicates that a program variable, e.g., sigma, is a
variable to tune (sample). It also specifies the distribution of
the variable from which sample values are taken.

A callback function AggregateGaussian() is pro-
vided by the user to facilitate tuning. In this example, we
implement it following an existing approach [39] to prune
the poorly smoothed ones. Specifically, it loads (line 6) the
images denoted by sImage which are computed according
to different sampled values of sigma and determines (line
7) whether each image is properly smoothed given the im-
age size imgSize. We will explain the relevant primitives
wbt_load(), wbt_loadS() and wbt_expose() in Sec-
tion III-A3. For each properly smoothed image, a new process
is spawned by the primitive wbt split (line 9) to continue to
tune low and high in the edge traversal stage (lines 34-41),
while preserving the sampled sigma value and the produced
image, i.e., sImage. Next we will discuss the execution
model that underlies the user interface.

C. Runtime Execution Model

The runtime execution framework is shown in Fig. 5.
Initially, the original main process executes normally until
it reaches the start of a tuning region (1©). At this point,
its role is switched to a tuning process. Intuitively, a tuning
process is the “manager” of a pool of sampling processes that
it spawns. A sampling process is the “worker” that conducts
the computation within the region, and emits its result at the
end of the region. The tuning process invokes the sampling
driver (2©) to spawn a pool of child sampling processes (3©).
The driver determines how many sampling processes to be
spawned and exercises a given sampling strategy. In some
cases, the sampling strategy is feedback driven and relies on
previous tuning results.

Fig. 4. White-box tuning for Canny. The highlighted statements are added.
Tuning primitives start with wbt.

After spawning, the tuning process pauses. The sampling
processes carry out the computation within the tuning code
region (4©), orchestrated by a scheduler (Sec. III-B2). When
a sampling process encounters a tuning variable (i.e., X),
it acquires a sample value from the variable’s distribution.
The sampling processes have different states afterwards. Upon
reaching the end of the tuning region, a sampling process
calls the child aggregation driver (5©) to commit its own
computation result from the sample result variable (i.e., Y) and
terminates. Note that although the sampling process also calls
the primitive wbt aggregate(), it only submits its sampling
outcome. After all sampling processes commit, the tuning
process resumes and invokes the parent aggregation driver
to aggregate the sampling results (6©). It then continues to
execute normally with the aggregated results (7©).

The above simplified model assumes a single tuning pro-
cecss in the runtime system. It is usually necessary to have
multiple tuning processes. For example, consider the aggrega-
tion at line 27 in Fig. 4, the user may want to spawn multiple
(independent) tuning processes each continuing with one from
a subset of good internal results, i.e., properly smoothed
images referred to by sImage, rather than a single tuning
process that continues with exactly one internal result. To

124

Fig. 5. Execution Model

achieve this, the user can use primitive wbt split() (line 9) to
explicitly spawn a new tuning process (not sampling process)
if the image is properly smoothed (line 7). Our runtime system
fully supports multiple tuning processes (Section III-A2).

D. Result and Comparison

Initially we use 200 samples (line 20). At the end of the
Gaussian smoothing stage (line 27), the invoked function
AggregateGaussian() prunes 78 samples that are not
properly smoothed, and keeps 122 samples. WBTuner further
spawns a tuning process for each remaining sample. When
each of these processes reaches the edge traversal stage (line
34), it triggers a new sampling procedure which explores 90
samples(with different configurations of the parameters low
and high) for each smoothed image. Hence the total number
of samples is 122×90=10980. Fig. 6 shows the tuning model
of WBTuner for Canny.

The sampling results are aggregated by majority voting (line
41), that is, a pixel is set if it is set in the majority of sample
runs. WBTuner supports voting by default. Hence, the user can
aggregate results through one line of function call. Finally, the
aggregated image is visualized at line 44.

For comparison, we also apply OpenTuner to tune Canny
with its default search strategy (i.e., Multi-armed bandit).
Since no algorithm exists for computing a score for the
output quality, we use simple heuristics to determine the poor
samples, such as those that have very few or too many pixels in
the final image. We use the execution time of WBTuner as the
timeout for OpenTuner. The images generated by OpenTuner
through its sampling runs are aggregated by the same voting
procedure in WBTuner.

The tuning results for the coffeemaker image are shown in
Fig. 7. Observe that WBTuner spent 90 seconds on 9040 sam-
ples whereas OpenTuner can only finish 842 samples within
the same amount of time, because most of its computation
time was spent on the expensive image loading, Gaussian
smoothing, and gradient computation stages as it has to repeat
such computation for each sample run. In addition to the

visual result, we use the SSIM score [70] to compare the
result with the ground truth result hand-picked by experts [33].
Both visual and scoring results demonstrate that that WBTuner
outperforms OpenTuner.

Fig. 6. Tuning Canny. TP/SP are tuning/sampling processes.

Origin Ground Truth OpenTuner WBTuner
samples - 842 10980
SSIM 1 0.592 0.794

Fig. 7. Tuning Canny with image coffeemaker in 90s.

III. EXECUTION MODEL: SEMANTICS AND SYSTEM

In order to achieve white-box tuning, we need to overcome
a number of prominent challenges related to the management
of stores and processes. First, an original process will spawn
many sampling processes, which may need to be terminated
(if the sampling result is poor), communicate with each other,
further spawn their own child sampling processes, and join at
specific execution points. Second, as the sampling processes
produce a lot of sample data from internal states, managing
such data (i.e., storing, accessing, and aggregating results
across processes) is also challenging. All these complexities
should be transparent to the users. In Section III-A, we
describe the formal execution model of our runtime system
with the operational semantics. In Section III-B, we present
the implementation details of our runtime system.

A. Semantics

The semantics are presented in Fig. 8. The related defini-
tions are presented at the top of the figure.

1) Stores: WBTuner has two stores, the store σ for original
program states and the sample store δ that is shared across
all processes to store sampling outputs. The two are isolated.
State transferring between the two are performed explicitly by
the programmer. In δ, states can be further divided into two
classes: (1) exposed store, a store for exposed variables, (2)
aggregation store, a store for sampled results from the child
sampling processes.

125

DEFINITIONS: Store σ ::= V ar → V alue SmpStore δ ::= V ar → V alue | V ar → (Index→ V alue) Mode ω ::= T〈pid〉 | S〈pid〉
Stmt s ::= ... | spawn(σ, δ, ω, s) | notify(pid) | wait(pid) | invoke(cb)

STATEMENT RULES: σ, δ, ω : s
s−→ σ′, δ′, ω′, s′ Let CPID = {Child Process ID}, PPID = Parent Process ID in the following rules:

σ, δ, ω : x := v
s−→ σ[x 7→ v], δ, ω, skip [ASSIGN]

σ, δ, T〈pid〉 : @sampling(n, cbStrgy); s
s−→ σ, δ, T〈pid〉, ∀i ∈ [1, n], spawn(σ, δ, S〈i〉, invoke(cbStrgy); s); invoke(cbStrgy); s [SAMPLING]

σ, δ, T〈pid〉 : @aggregate(x, cbAggr); s
s−→ σ, δ, T〈pid〉, invoke(cbAggr, x); s [AGGR− T]

σ, δ, S〈pid〉 : @aggregate(x, cbAggr); s
s−→ σ, δ[x[pid] 7→ σ(x)], S〈pid〉, skip [AGGR− S]

σ, δ, S〈pid〉 : @sample(x, cbDist); s
s−→ σ, δ, S〈pid〉, x := invoke(cbDist); s [SAMPLE]

σ, δ, T〈pid〉 : @split(); s
s−→ σ, δ, T〈pid〉, spawn(σ, {},T〈newPid()〉, s); s [SPLIT]

σ, δ, T〈pid〉 : @sync(cbBarrier); s
s−→ σ, δ, T〈pid〉, ∀i ∈ CPID, wait(i); invoke(cbBarrier); ∀i ∈ CPID, notify(i); s [SY NC − T]

σ, δ, S〈pid〉 : @sync(cbBarrier); s
s−→ σ, δ 7→ σ(x)], S〈pid〉, notify(PPID), wait(PPID); s [SY NC − S]

σ, δ, S〈pid〉 : @check(cbChk); s
s−→ σ, δ, S〈pid〉, if invoke(cbChk) ≡ true then s else skip [CHECK]

σ, δ, T〈pid〉 : @expose(x); s
s−→ σ, δ[x 7→ σ(x)], T〈pid〉, s [EXPOSE]

σ, δ, T〈pid〉 : y = @load(x); s
s−→ σ[y 7→ δ(x)], δ, T〈pid〉, s [LOAD]

σ, δ, T〈pid〉 : y = @loadS(x, i); s
s−→ σ[y 7→ δ(x)[i]], δ, T〈pid〉, s [LOADSAMPLE]

Fig. 8. Operational Semantics

a) Exposed Store: Exposed store is a mapping from
variables to values. A local variable is exposed by the primitive
wbt expose(). The exposed local variable is saved to the ex-
posed store and can be retrieved with the primitive wbt load().
Different from common local variables, the exposed local
variable is available outside its local scope (e.g., function).
Thus, the exposed local variable can be used to pass the
value across different scopes. For instance, in Fig. 4, the local
variable imgSize from the canny function is exposed at line
26 and then loaded at line 7 in the AggregateGaussian
function.

b) Aggregation Store: Aggregation store of a tuning
process stores the sampled outcomes. It maps each program
variable x to a vector δ(x), of which the ith entry holds the
value of the variable from the ith child process. Note that
vector abstracts the mapping from index to values. At the
semantic level, the primitive wbt aggregate(x, . . .) forces
each child sampling process to write/commit the value of x
from its regular store to the aggregation store of the parent
tuning process, as illustrated by line 27 in Fig. 4. The primitive
wbt loadS(x, i) loads the value of x from the ith child
process, as illustrated by line 6 in Fig. 4.

2) Processes: WBTuner supports two execution modes,
T〈pid〉 denotes the a tuning process and S〈pid〉 is a sampling
process. pid denotes the process id. To facilitate discussion, we
extend the statements to include a spawn(σ, δ, ω, s) statement
that forks a process with the specified stores, execution mode,
and the process body s, a notify(pid) statement that notifies a
process pid, a wait(pid) statement that waits for a notification
from the process pid, and an invoke(cb) statement that
invokes a callback function cb.

3) Statement Rules: Rule [SAMPLING] forks n sampling
processes (indicated by the S〈i〉 mode) through the spawn()
primitive. Observe that the last parameter of the primitive is the
body of the child process, which contains the same statements
as the parent, namely, “invoke(cbStrgy); s”. After forking,
callback cbStrgy() is called to initialize the sampling strategy
in the children. Note that Rule [SAMPLING] only applies in
a tuning process. It is a NOP in a sampling process.

Rule [AGGR-T] specifies that a tuning process invokes

the callback cbAggr() to aggregate the sampling results for
variable x. In the callback, the user can implement various
aggregation strategies. For example, the values of sample
target variable x from all sample processes can be averaged
and written back to x in the tuning process, which can
proceed with the aggregated value. In contrast, Rule [AGGR-S]
specifies that upon aggregation, a sampling process stores its
sampling outcome of x to the element of the sampling vector
corresponding to the process id and then terminates. Recall
that only the tuning process aggregates results and sampling
processes only produce results.

Rule [SAMPLE] only applies to sampling processes. It spec-
ifies that the callback cbDist() is invoked to acquire a sample
value for variable x, which denotes a parameter to tune. Rule
[SPLIT] specifies that a tuning process can explicitly spawn
a child tuning process. The child process is for tuning the
next phase. Function newPid() returns a new pid. The child
process inherits the regular store but not the sample store from
the parent. Rule [SYNC-T] indicates that the tuning process
waits for all the child sampling processes to reach the barrier,
and then it invokes cbBarrier() to perform some operations
that access results across multiple sample runs. After that,
the tuning process notifies all its child sampling processes to
proceed. Compared to @aggregate, @sync is usually used in
the middle of a sampling region. Rule [SYNC-S] specifies that
a sampling process notifies its parent tuning process after it
has reached the barrier. It then waits for the tuning process to
finish the callback and notify it to proceed. Notifications from
child processes are queued to avoid message lost which may
lead to deadlocks.

Rule [CHECK] specifies that a sampling process invokes a
callback cbChk() to check its local states. If the check returns
false, the sampling process is terminated. This feature allows
us to terminate useless sample runs long before they get to
the aggregation point (e.g., k-means in Sec. V-B3), which
improves not only the performance but also the final results.
Note that such improvements are impossible to achieve in
black-box tuning.

Rule [EXPOSE] exposes the value of x from the regular

126

store to the sample store, which is accessed by tuning call-
backs. The rule only applies to tuning processes. Observe that
it allows callbacks to access program variables outside their
scopes. Rule [LOAD] loads an exposed variable x (from the
exposed store of δ) inside some callback function in a tuning
process. Rule [LOADSAMPLE] loads the ith sample outcome
of x (from the aggregation store of δ).

B. WBTuner Runtime System

We present the implementation details of WBTuner runtime
by following the same structure as Section III-A.

1) Stores:
a) Exposed Store: We implemented the exposed store as

follows. Our system encodes a local variable with its name and
its scope information (e.g., the function name) before mapping
it to the value in the exposed store. Similarly, our system uses
the name and the scope information of a variable to retrieve the
associated value. The encoding guarantees we can access the
value of the exposed variable throughout the whole execution.
Note that the scope information is required to distinguish the
local variables with the same name from different scopes.

b) Aggregation Store: Our system achieves the semantics
by leveraging the file system in disk. In particular, all sampled
outcomes (WBTuner supports multiple sample result variables
aggregation) of a sampling process are stored in a file. The file
name is in the form pid, which specifies the sampling process
that submits the results of the variables. All the files are stored
in a directory owned by the tuning process. To load the ith
outcome of x from disk, our system searches in the directory
owned by the tuning process for the related file based on the
information in primitive wbt loadS(x, i).

2) Processes:
a) Process Scheduling: In practice there will be large

number of tuning and sampling processes executing concur-
rently at runtime. Thus, WBTuner provides a scheduler to
manage the creation and termination of processes. It prevents
excessive process creation for better performance (Fig. 10).
Using a uniform process pool is not optimal because of the
difference between the two kinds of processes (tuning and
sampling). Instead, we prioritize a sampling process over a
tuning process because the former conducts the real computa-
tion. In addition, we want to finish all the sampling processes
belonging to a tuning process as soon as possible so that the
tuning process can finish its work and yield the resource.

The scheduler works as follows. Upon a spawn request, it
checks if there are enough resources. If not, the current process
is put in a priority queue. Upon a process termination event,
the highest priority process in the queue is woken up.

Algorithm 1 shows the details. The Schedule procedure is
called with pid (i.e., process id), event and todo. There are
three possible events: SPAWN S (i.e., spawning a sampling
process), SPAWN T (i.e., spawning a tuning process), and
EXIT . The parameter todo denotes the number of samples
remained for the current (tuning) process. Sampling processes
are ordered inside the priority queue based on the todo values
of their parent tuning processes. Lines 2-7 correspond to

process termination, which wakes up the process with the
highest priority. At line 8, the computed threshold denotes
the remaining resources. If the number of available resources
is below it, the current process will be put back into the
priority queue (lines 9-12). Otherwise, it is allowed to proceed
(line 14). Since real tuning is done by sampling processes, the
threshold is always 0 for sampling processes so that they don’t
have to wait if there is any available resource. A configurable
variable is used to prevent spawning too many tuning processes
because they would inevitably lead to decreasing the tuning
efficiency. In Algorithm 1, we set the configurable threshold
of tuning process to 75% (i.e., it has to wait if 25% processes
are occupied).

For benchmarks requiring a large number of samples and
consuming lots of memory (e.g., Canny), the scheduler limits
the number of concurrent samples and reduces the memory
consumption and execution time significantly (Fig. 10). Too
much memory consumption will result in excessive page fault
which degrades the runtime performance.

IV. PRACTICAL CHALLENGES

A. Overfitting

Since machine learning algorithms normally produce mod-
els as their output, the tuning task of these hyper-parameters
is usually guided by the execution results of the models
(e.g., lower classification errors). However, it might lead to
overfitting, meaning that the model with the tuned hyper-
parameters produces optimal results with training data but poor
results with testing data. Note that programs such as Canny
do not have this problem as they are tuning for the final result
but not models tested by new data. Cross-validation can help
to mitigate such hyper-parameters tuning problem according to
existing studies [37, 50]. Specifically, it searches for the model
hyper-parameters that generalize, rather than fitting to the
training dataset. WBTuner provides intrinsic support to address
overfitting by combining its execution model with k-fold cross-
validation [65], a widely used technique. Specifically, to tune
the parameters in a machine learning algorithm, the user only
indicates the k value in the wbt sampling() primitive and
provides a validation callback. WBTuner will then transpar-
ently include k-fold cross validation during its tuning process.
The experimental results in Fig. 17 demonstrate the necessity
of cross-validation.

The tuning-validation model is shown in Fig. 9. First, the
input data is transparently divided to k datasets for each
sample run. Moreover, for the xth original sample run, WB-
Tuner spawns k − 1 more processes, that form a sampling
and validation group (SVG). If the user intends to collect n
samples originally, WBTuner internally creates n SVGs, that
is, n∗k processes. All the k processes in a SVG share the same
sample values for the tuning variables but use different datasets
for training and validation to prevent overfitting. As illustrated
in the figure, the ith process in the SVG uses the ith dataset for
validation and the remaining k−1 datasets for training. At the
end of the execution of an SVG process, WBTuner invokes the
user-supplied validation callback to apply the produced model

127

Fig. 9. Tuning + Validation Execution Model

on its validation dataset and computes the validation error. The
validation errors from all SVG processes are then aggregated
to drive the remaining steps of the tuning procedure. The
experimental results in Fig. 17 demonstrate the necessity of
cross-validation.

B. Incremental Aggregation

According to the execution model of WBTuner, the sam-
pling results are submitted by the sampling processes and
aggregated by the tuning processes once the sampling is com-
pleted. However, the whole execution entails massive storage
and I/O overhead. According to our observation, aggregation
can be performed incrementally in many benchmark programs
as their aggregations involve functions such as finding the min,
max, average, or majority. For instance, for the aggregation
strategy min/max, each sampling process updates a shared
global variable min/max by comparing its local outcome with
the global variable. For incremental averaging, WBTuner uses
a shared ring buffer to which sampling processes copy their
results. The tuning process then consumes the data from
the buffer to perform incremental averaging. Majority voting
is handled in a similar fashion. In our experiment section
(Fig. 10), we will show that incremental aggregation substan-
tially reduces the tuning time and memory consumption.

C. Sampling/Aggregation Strategies

In addition to custom strategies provided by the user, WB-
Tuner supports several common sampling/aggregation strate-
gies by default. The user only needs to indicate the strategy
name inside the wbt sampling/wbt aggregate primitive to
use it. Currently, the supported sampling strategies are random
(RAND) and Markov Chain Monte Carlo (MCMC). For aggre-
gation strategies, WBTuner supports min, max, majority vote
(MV), averaging (AVG), and duplicate elimination (DEDUP).
Based on our experience, these strategies are usually suffi-
cient for most of the tuning tasks. Observe that only four
benchmarks (out of 13 benchmarks) use custom aggregation
strategies in our experiments.

D. Auto-tuning Sampling Number

Since the number of samples varies from one tuning region
to another, WBTuner provides an automatic way similar to

exponential backoff [12] to determine the optimal num-
ber of samples. For the sampling number of each primitive
wbt sampling(), WBTuner doubles it and compares the ag-
gregated results between the samples from original set and the
samples from doubled set according to the scoring function. If
the doubled result is better, the number of samples is doubled
again until the no further improvements.

Algorithm 1 Process Scheduling

1: procedure SCHEDULE(pid, event, todo)
2: if event = EXIT then
3: poolSize← poolSize+ 1
4: if PQueue not EMPTY then
5: p← PopPQueue()
6: signal(p.pid)

7: return
8: threshold← (event = SPAWN S) ?

0 : MAX POOL SIZE × 0.75
9: while poolSize <= threshold do

10: PushPQueue(new P (pid, event, todo))
11: poolSize← poolSize+ 1
12: wait()
13: poolSize← poolSize− 1

14: poolSize← poolSize− 1
15: return

V. EVALUATION

WBTuner is implemented in C and publicly available
at [71]. We evaluate the efficiency and effectiveness of WB-
Tuner and compare it with OpenTuner. Experiments were run
on a machine with Intel i7-2640M 2.80GHz processor and
16GB RAM.
Benchmarks. We use a wide variety of C/C++ benchmarks
in our experiments, including 12 widely used data processing
programs and a complex open-source controller software for
commercial drones. These are heavily parameterized applica-
tions. For more benchmark information, please refer to the
supplementary material [71] Section 2.

All programs have multiple datasets that can be found
online or come with the program. We have selected only the
datasets that have the outcome ground truth for comparison.
On average, we used 10 datasets for each program. The results
are summarized in Table I. Benchmarks either come with their
own scoring functions or use publicly available scoring func-
tions, so the callbacks for them are implemented accordingly.
Comparison results of benchmarks without scoring functions
(i.e., with superscript 1 in Tab. I) are explained in section V-A.

Columns 1-2 show the programs names and the lines of
code. Column 3 shows the number of tunable parameters and
column 4 shows the number of WBTuner primitives added to
the source. The next two columns (5-6) describe the sampling
and the aggregation strategies. Most programs use random
sampling. DBScan and K-means demonstrate the use of
a different sampling strategy (MCMC). C4.5 and SVM use
random sampling together with cross-validation, which is also
implemented in OpenTuner for these two benchmarks (for

128

TABLE I
BENCHMARK STATISTICS AND THE EXPERIMENT RESULTS FOR ACHIEVING THE BEST TUNING SCORES.

Program LOC #P #PR Sampling Aggregation Ext LOC
Single Core Multi Core

Native WBTuner OpenTuner o/h(x) Native WBTuner OpenTuner o/h(x)
time(s) Score time(s) Score time(s) Score OT/WB time(s) time(s) Score time(s) Score OT/WB

[20] ↑ Canny 1 1.1k 3 8 RAND CUSTOM/MV 151 0.159 0.29 51.53 0.636 t/o2 0.44 - 0.061 17.75 0.636 t/o 0.44 -
[17] ↑ Watershed 1 270k 3 5 RAND MV 34 1.03 0.41 26.1 0.65 31.5 0.65 2.11 0.93 56.1 0.65 221.59 0.65 3.95
[46] ↑ Kmeans 1.2k 1 5 MCMC MAX 56 0.165 0.46 1.57 0.523 9.7 0.523 5.79 0.057 0.56 0.523 2.49 0.523 4.45
[28] ↑ DBScan 908 2 7 MCMC MAX 80 0.657 0.299 25.41 0.502 124.08 0.502 3.21 0.021 2.94 0.502 15.7 0.502 5.34
[18] ↓ Face Rec 9.6k 3 7 RAND MIN 92 4.788 17 578.62 7.3 1203.25 7.3 2.07 4.6 33.47 7.3 684.12 7.3 4.44
[42] ↑ Speech Rec 1 19.8k 16 18 RAND MV 89 4.263 1 313.25 5 t/o 4.2 - 4.12 19.54 5 t/o 4.2 -
[58] ↓ Phylip 12.6k 4 12 RAND DEDUP/MIN 95 4.67 20.4 1021.4 0.84 1910.23 0.84 1.87 2.4 211.15 0.84 693.21 0.84 3.28
[57] ↑ FASTA 77.5k 2 4 RAND CUSTOM 108 0.12 40 1.56 523 4.91 523 3.54 0.02 0.25 523 t/o 461 -
[55] ↑ TOPN Rec 33.5k 3 5 RAND MAX 3 6.16 0.1 273.45 0.126 560.5 0.126 3.04 5.9 81.2 0.126 513.1 0.126 6.32
[38] ↓ METIS 44.3k 3 5 RAND MAX 30 0.16 6952 4.77 6706 20.57 6706 4.31 0.06 1.2 6706 7.34 6717.7 6.12
[60] ↓ C4.5 17.8k 2 4 RAND+CV MIN 58 0.059 2.46 7.23 0.082 21.54 0.082 3.18 0.036 1.68 0.082 6.54 0.082 3.89
[25] ↓ SVM 11.3k 8 10 RAND+CV MIN 44 6.172 87 233.72 9.5 438.12 9.5 1.96 5.314 66.98 9.5 288.23 9.5 4.3
[45] ↓ Ardupilot 278k 40 44 RAND CUSTOM 204 - 1954k - - - - - 192.3 151k 1074k - - -
↑: Higher scores are better; ↓: lower scores are better. 1. These benchmarks do not have default scoring functions.
2. “t/o” means OpenTuner cannot achieve the similar score (i.e., difference < 10%) of WBTuner.

comparison). Column 7 presents the LOC in tuning callback
functions. Observe that the number of primitives is small,
yet, it allows to represent complex tuning models as we will
demonstrate in Section V-B. The LOCs for callbacks are small
compared to the source code LOCs. They mainly implement
scoring functions or checks.

A. Tuning Results Summary

In the first experiment, we ran each benchmark with the
largest dataset under three settings – (1) native run without
tuning; (2) white-box tuning with WBTuner; (3) black-box
tuning with OpenTuner and its default search strategy (i.e.,
multi-armed bandit [30]).

We ran WBTuner with the number of samples auto-tuned
(Sec. IV-D) by WBTuner until converging, then we collected
the tuning time. For OpenTuner, we gradually increased the
timeout parameter until it either reaches similar results as
WBTuner (difference < 10%) or could not reach similar
results after spending 10 times WBTuner ’s tuning time. We
measured the quality of the tuning results by comparing with
the ground truth that comes with the datasets. Note that these
ground truths are only used in measuring quality, but not in
tuning. As stated before, OpenTuner requires scoring functions
to guide the search; however, a few benchmarks do not have
a standard scoring function (marked with the superscript 1 in
Table I). To achieve fair comparison, for these benchmarks,
we implemented the same domain-specific heuristics from
WBTuner in OpenTuner to distinguish good and bad samples,
and to use the same aggregation method from WBTuner to
aggregate the good sample results. To quantify the results
for these programs, we compute their scores based on the
comparison with the ground truths. Such scores are not used
in tuning.

Since OpenTuner does not support parallel sampling by
default, which requires substantial engineering effort, we con-
ducted the comparison in both single-core and multi-core. The
single-core results are shown in columns 8-14 in Table I, while
the multi-core results are shown in columns 15-20. Columns 8
and 9 present the native execution time and the score without

tuning. Note that for the programs with ↑, the higher the scores
the better, and for the others with ↓, the lower the scores the
better. Column 10 presents the tuning time of WBTuner upon
convergence. Column 11 shows the converged score. Column
12 shows the tuning time for OpenTuner. Those with “t/o”
mean that those scores are apparently worse (difference >
10%) than WBTuner after spending 10x more tuning time.
Column 13 shows the final tuning score of OpenTuner. Column
14 shows the overhead comparison. Columns 15-20 are the
results for multi-core.

Observe that for single-core environment, OpenTuner times
out in 2 out of the 13 cases. For the other cases, the average
tuning overhead of OpenTuner is 3.08X higher than WBTuner.
For multi-core environment, 3 cases time out and the overhead
ratio is 4.67X.

Observe that WBTuner substantially improves the results
quality compared to those without any tuning. It is more
effective than OpenTuner. For the cases that OpenTuner can
reach the scores of WBTuner, we also allow more tuning time;
still, it did not produce better results.

Fig. 10 shows the effect of the optimizations discussed
in Sec. III-B2 and IV-B. Observe that the incremental ag-
gregation is highly effective for several cases, especially for
reducing the memory usage as it prevents reading a large
number of results for one-shot aggregation. Observe that the
scheduler further improves the performance in several cases,
especially Canny and K-means. Before optimization, Canny’s
execution time and memory overhead are about 4X higher.

B. Tuning Case Studies

In this section, we study the details of tuning several
representative programs under the single core environment and
tuning Ardupilot (a drone controller) in the multi-core envi-
ronment. Part of the discussion is moved to the supplementary
material [71] Section 2.1 due to the space limitation.

1) Image Processing:
Canny. In Section II, we have already shown the tuning results
of Canny. Here we used 10 different images from [33], where

129

Fig. 10. Optimization effects on different benchmarks

each image has a ground truth result image hand-picked by
experts.

Since no general scoring function exists, we use majority
vote for results aggregation, meaning the result with the largest
number of supports from the sample runs is reported. Then
we use the SSIM [70] score to compare the voting result
with the ground truth. The higher the score the better. We
extended OpenTuner with the majority voting capability to
achieve fair comparison. For each image, we ran WBTuner
and OpenTuner 10 times and took the average. Fig. 11 shows
the tuning score when WBTuner converges, the corresponding
OpenTuner score after it runs the same amount of time, and the
score without tuning. Observe that WBTuner almost always
produces the best results.

On average, OpenTuner has 119% improvement over no-
tuning, whereas the improvement of WBTuner is 178%. The
reason is that WBTuner can prune a lot of sample runs that
will not yield promising results after stage one (Fig. 4).

Fig. 11. Canny tuning scores of 10 images.

Fig. 12. Canny tuning score variation

The score variation with the tuning time is shown in
Fig. 12 for the pitcher and brush images, which represent

the maximum and minimum improvement over OpenTuner,
respectively. Observe that for pitcher, even 5-second tuning
in WBTuner yields much better results for 30 seconds tuning
in OpenTuner. The visualization in Fig. 13 shows that the
result by WBTuner is very close to the ground truth but the
result by OpenTuner is not. For brush, WBTuner has a very
close but lower score at the end, although the two have very
comparable performance all the time. Fig. 13 shows that the
WBTuner’s result is not inferior.

Pitcher Ground Truth WBTuner OpenTuner

Brush Ground Truth WBTuner OpenTuner

Fig. 13. Canny results of WBTuner and OpenTuner

2) Bioinformatics:
Phylip. Phylip [31, 58] generates the phylogenetic tree of
given protein or DNA sequences by calculating the distances.
It shows the evolutionary relationships between various bio-
logical species. Phylip consists of five stages of computation
as shown in Fig. 14.

Stage 1 generates the transition probability matrix and
has a tunable parameter ease. Stage 2 loads data and per-
forms preprocessing. Stage 3 generates the distance matrix
based on the transition probability matrix and the input. It
has two tunable parameters invarfrac and cvi. Stage 4
initializes the phylogenetic tree. Stage 5 generates the tree
based on the distance matrix from stage 3. It has a tunable
parameter power. WBTuner tunes stages 1, 3 and 5. The
wbt aggregation() primitive is called at the end of stages
1 and 3 with the duplicate-elimination (DEDUP) strategy to
prune the sample runs that have similar matrices. Thus, new
tuning processes are only spawned for unique matrices. At the
end of stage 5, the aggregation selects the tree with the lowest
sum of squares, which is the default scoring function. Lower
score means the better result.

Fig. 15 shows tuning score comparison for ten datasets
from [52] when WBTuner converges. Observe that tuning is
critical for this program. On average, WBTuner can reduce
the errors by a factor of 283 when compared with no tuning,
and by a factor of 4.77 when compared with OpenTuner.

Fig. 16 shows the tuning score variations over time for
data2 and data10 that have the maximum and minimum
improvement over OpenTuner, respectively. For data2, 40
seconds of tuning in WBTuner achieves a similar result as 135
seconds of tuning in OpenTuner. The improvement is achieved
by the independent tuning/pruning in the three tuning regions.
Although OpenTuner outperforms WBTuner for data10, the
difference between the two results is nearly invisible.

130

Fig. 14. White-box tuning for phylip tree

Fig. 15. Phylip tree tuning scores on 10 datasets.

3) Machine Learning:

Support Vector Machine (SVM). SVM [25] is a popular
machine learning algorithm for data classification. It is a su-
pervised learning technique which takes the training data with
feature class labels to build a model for classifying new data.
We use the multi-class SVM [36] to classify data with multiple
class labels. The algorithm has 8 tunable parameters, which
lead to substantially different models if tuned differently.
Furthermore, like most machine learning algorithms, certain
parameter settings may lead to overfitting (Section IV-A).
Thus, we leverage the k-fold cross-validation in WBTuner to
tune the parameters while preventing overfitting.

We compare the results tuned by WBTuner with and without
cross-validation for 10 datasets obtained from [11]. We divide

Fig. 16. Phylip tree tuning score variation

Fig. 17. SVM tuning scores of 10 datasets w/wo validation

Fig. 18. SVM tuning scores of 10 datasets

each dataset into two equal sets and use the first half for
training and tuning and the second half for testing. We then
collect the results after both tuning converge. The results are
depicted in Fig. 17. Observe that for the left two bars (without
cross-validation), the training error (black bar) is close to zero
while the testing error is very high, indicating overfitting. For
the right two bars (with cross-validation), the testing error is
significantly lower than that without cross-validation, which
strongly suggests that cross-validation substantially mitigates
the overfitting problem. That is, the new model generalizes
better from the training dataset, without being affected by its
details and noise. The results strongly suggest that overfitting
is a prominent challenge in tuning and WBTuner effectively
addresses this problem transparently.

We also compare the result generated by WBTuner and
OpenTuner. As OpenTuner does not handle overfitting by
default, we extended its implementation to provide cross-
validation as well (using the same k). Observe that WBTuner
consistently outperforms OpenTuner. The tuning improvement
by OpenTuner over no-tuning is 35% whereas the improve-
ment by WBTuner is 47%. Fig. 19 shows the score variation
for the best and the worst datasets. Observe that for Cleveland,
even after 1500 seconds, OpenTuner cannot reach the result
produced by WBTuner within 80 seconds.

4) Speech Recognition:

Sphinx. Sphinx [43] is a popular speech recognition system.
It takes a raw audio and a dictionary, and generates the
script for the audio according to the dictionary. It has 16
tunable parameters, such as the upper and lower edges of filers,

131

Fig. 19. SVM tuning score variation

Fig. 20. Sphinx tuning of 10 datasets

language weight, and word insertion penalty. These parameters
are critical to the recognition results. Different persons’ audios
may require different parameter sets. Since there does not exist
a general scoring function, the tuning results are aggregated
using majority vote. OpenTuner is also extended with the
majority voting capability for fair comparison.

In the study, we took 10 sets of audios (for 10 persons)
from the AN4 dataset [61], each set having 5 audios. We
applied both WBTuner and OpenTuner to all these 50 audios.
Fig. 20 shows the recognition precision comparison when
WBTuner converges (i.e., the number of audios that are
correctly recognized for each dataset). Observe that WBTuner
precisely recognizes all 5 audios for 6 out of 10 sets, and more
than 4 audios for another 3 sets. To reduce non-determinism,
we ran the experiment multiple times and took the average.
Thus, there are some decimal numbers in the precision results.
In contrast, Sphinx can only recognize 2.7 audios on average
without tuning, and 3.94 audios with OpenTuner. Fig. 21
shows the score variations for the best and worst data sets.

5) Tuning Drone’s Behavior.:
Here we demonstrate how we can leverage WBTuner to

tune large and complex cyber-physical systems for behavior

Fig. 21. Sphinx tuning score variation

learning. Specifically, we aim to tune one drone’s parameters
so that it mimics the behavior of the other one.

We use two pieces of widely used drone control software:
PX4 [47] and Ardupilot [45]. They are complex (385k and
278k LOC respectively), and have completely different fea-
tures and implementations. Furthermore, PX4 has 426 con-
figurable parameters and Ardupilot has 612 and the mean-
ings of these parameters are quite different. Thus, High-end
drones usually have parameter configurations enabling much
better performance, as their engineers spent a lot of time
in tuning. For example, Ardupilot flies much slower than
PX4 (25% slower) and has much higher battery consumption.
PX4s controller is clearly out-performing Ardupilot. WBTuner
allows Ardupilot to automatically learn from PX4, saving the
substantial manual tuning efforts. Note that there is hardly any
correspondence between parameters across the two systems so
that one cannot simply copy parameter values. Moreover, only
increasing the speed is suboptimal because there are other
parameters to consider such as power consumption or way-
point radius to prevent overshoot.

Although both PX4 and Ardupilot provide their own specific
black-box parameter tuning tools [68, 69], only a limited
number of parameters can be tuned by these tools and thus
cannot lead to optimal results. Furthermore, they cannot be
applied to achieve more sophisticated tuning tasks such as
behavior learning, which is a popular tendency for training
autonomous vehicles with different purposes [5, 51, 75].
Tuning Target. We aim to tune the parameters of Ardupilot
to make it learn the flying behavior of PX4. We identify 40
parameters that are most relevant to drone control in Ardupilot
and mark them as the tuning variables. We use the motor
speed variables as the sample result variables since the drone’s
behavior is mostly determined by the speed of its four motors.
We fly both Ardupilot and PX4 under the same mission,
and then employ WBTuner to tune the tuning variables in
Ardupilot while learning from PX4’s flying behavior. Namely,
we define the scoring function as the root-mean-square errors
of the four motors speed between the two controllers. Further-
more, as a typical mission in Ardupilot often needs to execute
under multiple flight modes (e.g., takeoff or land), we define
the tuning regions as the individual mode control functions.

To tune Ardupilot according to PX4’s behavior, we first fly
both Ardupilot and PX4 under 2 different missions. The first
one consists of taking off, rising to 10 meters, and finally
landing. The second mission makes the drone fly along a 45m
route with 3 way points. Our experiments are conducted using
the Gazebo simulator [41]. The first mission uses 2000 sample
runs, while the second uses 6000 runs given its complexity,
each taking 20-30 seconds. Overall, the tuning time is about 42
hours due to real-time simulation. Then we test the subsequent
performance of Ardupilot with the tuned parameters under a
complex mission, where the drone zigzags and returns to the
starting point with a flight distance of 165m.

Detailed training results are provided in the supplementary
material [71] Section 2.1.2. Fig. 22 shows the results of the
testing mission. After tuning, the motors speed of Ardupilot is

132

quite similar to PX4. Even more, its flight time is reduced from
the original 105 seconds to 82 seconds (i.e., 22% fewer). The
recorded videos for the test mission are available at [1, 2, 59].

Fig. 22. Testing mission

OpenTuner cannot be applied here for the following reasons.
(1) Several parameters that affect multiple flight modes in a
single mission. They are tuned to different values for various
modes. This cannot be supported by blackbox tuning; (2) Each
sample run in OpenTuner is a whole execution that includes
expensive simulator startup and drone preparation taking 3-4
minutes per sample. In contrast, WBTuner tunes small code
regions and each sample run is just 20-30 seconds; (3) The
simulator often fails to start (we suspect that it results from the
locked resources of previous closed execution). This is not a
problem for WBTuner as it can spawn all the sampling/tuning
processes after a successful start.

VI. RELATED WORK

WBTuner is related to many existing input selection or
fuzzing works [21, 22, 26, 27, 32, 44, 49, 56]. They use dif-
ferent search techniques such as MCMC or genetic algorithms
to address software engineering or cyber-security problems.

Several autotuning frameworks are proposed for domain-
specific programs. For example, [14, 19] tune data-mining al-
gorithms; [72] aimed to generate an optimized matrix multiply
routine by empirical autotuning; [24] is specialized for tuning
stencil computation; and [35] is a stochastic approach for pa-
rameter tuning of SVM. In [10], a compiler autotuning frame-
work is proposed to speed up application performance using
bayesian networks. Several dynamic autotuning frameworks
[3, 8, 13, 15, 23, 34, 62, 63] were proposed to monitor program
execution to guide the program to perform self-adaptation for
achieving specific optimization goal. For example, PowerDial
[34] transforms static configuration parameters into dynamic
controllable variables to make programs power-aware.

PetaBricks [6, 9] proposes a language- and compiler-based
solution for tunable algorithm construction. Different algo-
rithms and parameter configurations are being tuned to achieve
better performance and accuracy. Different algorithms are
selected for execution by the Petabricks runtime. It advocates
the concept of tuning by construction, targeting on stream
data processing. The individual streaming components only
interact through their interfaces and do not have any other
inter-dependences. However, it cannot tune pre-existing non-
streaming programs where inter-dependences across phases are
substantial like in Ardupilot. Furthermore, users need to use
the proposed language.

Automatic parallelization [4, 66, 67] transforms a sequen-
tial program to its concurrent version which is guided by

annotations. They divide a computation task into concurrent
sub-tasks. In contrast, WBTuner spawns processes to compute
similar but different tasks.

VII. CONCLUSION

We propose WBTuner, a general white-box tuning engine. It
provides primitives that allow users to easily compose complex
tuning tasks as if they are writing extensions to the original
programs. Our experiments show that WBTuner substantially
improves data processing results and outperforms the state-of-
the-art black-box tuning engine.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their construc-
tive comments. This research was supported, in part, by
DARPA under contract FA8650-15-C-7562, NSF under awards
1748764 and 1409668, ONR under contracts N000141410468
and N000141712947, and Sandia National Lab under award
1701331. Any opinions, findings, and conclusions in this paper
are those of the authors only and do not necessarily reflect the
views of our sponsors.

REFERENCES

[1] Adrupilot-default. ”https://drive.google.com/open?id=
0BxgPTM7nEUyCcTFKdjM4RVNrMk0”, 2018.

[2] Adrupilot-tuned. ”https://drive.google.com/open?id=
0BxgPTM7nEUyCYmVPdzBtMnoyT1U”, 2018.

[3] Anant Agarwal, Martin Rinard, Stelios Sidiroglou, Sasa
Misailovic, and Henry Hoffmann. Using code perforation
to improve performance, reduce energy consumption, and
respond to failures. Technical report, MIT, 2009.

[4] Jonathan Aldrich, Ronald Garcia, Mark Hahnenberg,
Manuel Mohr, Karl Naden, Darpan Saini, Sven Stork,
Joshua Sunshine, Éric Tanter, and Roger Wolff.
Permission-based programming languages (nier track). In
ICSE 2011.

[5] Olov Andersson, Mariusz Wzorek, and Patrick Doherty.
Deep learning quadcopter control via risk-aware active
learning. In AAAI 2017.

[6] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski,
Qin Zhao, Alan Edelman, and Saman Amarasinghe.
Petabricks: A language and compiler for algorithmic
choice. In PLDI 2009.

[7] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni,
Una-May OReilly, and Saman Amarasinghe. Opentuner:
An extensible framework for program autotuning. In
PACT 2014.

[8] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan,
Marek Olszewski, Una-May O’Reilly, and Saman Ama-
rasinghe. Siblingrivalry: Online autotuning through local
competitions. In CASES 2012.

[9] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski,
Alan Edelman, and Saman Amarasinghe. Language
and compiler support for auto-tuning variable-accuracy
algorithms. In CGO 2011.

133

[10] Amir Hossein Ashouri, Giovanni Mariani, Gianluca
Palermo, Eunjung Park, John Cavazos, and Cristina Sil-
vano. Cobayn: Compiler autotuning framework using
bayesian networks. ACM Transactions on Architecture
and Code Optimization, 2016.

[11] Arthur Asuncion and David Newman. Uci machine
learning repository, 2007.

[12] Exponential backoff. IEEE Standard 802.3-2008, 2008.
[13] Woongki Baek and Trishul M. Chilimbi. Green: A frame-

work for supporting energy-conscious programming us-
ing controlled approximation. SIGPLAN Not., 2010.

[14] Jérémy Besson, Christophe Rigotti, Ieva Mitasiunaite,
and Jean-François Boulicaut. Parameter tuning for dif-
ferential mining of string patterns. In ICDMW 2008.

[15] V. Bhat, M. Parashar, Hua Liu, M. Khandekar, N. Kan-
dasamy, and S. Abdelwahed. Enabling self-managing
applications using model-based online control strategies.
In ICAC 2006.

[16] T. Blaschke. Object based image analysis for remote
sensing. ISPRS Journal of Photogrammetry and Remote
Sensing, 2010.

[17] Dan Bloomberg. Leptonica image processing and anal-
ysis library. ”http://www.leptonica.com/”, 2001.

[18] David S Bolme, J Ross Beveridge, Marcio Teixeira, and
Bruce A Draper. The csu face identification evaluation
system: its purpose, features, and structure. In Computer
Vision Systems. 2003.

[19] Ole Burmeister, Markus Reischl, Georg Bretthauer, and
Ralf Mikut. Data mining analyses with the matlab
toolbox gait-cad. Automatisierungstechnik, 2008.

[20] J Canny. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1986.

[21] Michael Carbin, Sasa Misailovic, and Martin C. Rinard.
Verifying quantitative reliability for programs that exe-
cute on unreliable hardware. In OOPSLA 2013.

[22] Michael Carbin and Martin C. Rinard. Automatically
identifying critical input regions and code in applications.
In ISSTA 2010.

[23] Fangzhe Chang and Vijay Karamcheti. A framework for
automatic adaptation of tunable distributed applications.
Cluster Computing, 2011, 2011.

[24] Matthias Christen, Olaf Schenk, and Helmar Burkhart.
Patus: A code generation and autotuning framework
for parallel iterative stencil computations on modern
microarchitectures. In IPDPS 2011.

[25] Corinna Cortes and Vladimir Vapnik. Support-vector
networks. Machine Learning, 1995.

[26] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon,
Sebastian Hack, and Andreas Zeller. Generating test
cases for specification mining. In ISSTA 2010.

[27] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni,
Xipeng Shen, Una-May O’Reilly, and Saman Amaras-
inghe. Autotuning algorithmic choice for input sensitiv-
ity. In PLDI 2015.

[28] Martin Ester, Hans Kriegel, Jorg Sander, and Xiaowei

Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. In KDD 1996.

[29] A. M. Fahim, A. M. Salem, F. A. Torkey, and M. A.”
Ramadan. An efficient enhanced k-means clustering
algorithm. Journal of Zhejiang University SCIENCE A,
2006.

[30] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and
Michèle Sebag. Analyzing bandit-based adaptive oper-
ator selection mechanisms. Annals of Mathematics and
Artificial Intelligence, 2010.

[31] Nir Friedman, Matan Ninio, Itsik Pe’er, and Tal Pupko.
A structural em algorithm for phylogenetic inference.
Journal of Computational Biology, 2002.

[32] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based
directed whitebox fuzzing. In ICSE 2009.

[33] Michael D. Heath, Sudeep Sarkar, Thomas Sanocki, and
Kevin W. Bowyer. Robust visual method for assessing
the relative performance of edge-detection algorithms.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1997.

[34] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin,
Sasa Misailovic, Anant Agarwal, and Martin Rinard.
Dynamic knobs for responsive power-aware computing.
ACM SIGPLAN Notices, 2011.

[35] F. Imbault and K. Lebart. A stochastic optimization ap-
proach for parameter tuning of support vector machines.
In ICPR 2004.

[36] T. Joachims. Making large-scale SVM learning practical.
Advances in Kernel Methods - Support Vector Learning,
1999.

[37] Frank Kane. Hands-on data science and python machine
learning, 2017.

[38] George Karypis and Vipin Kumar. Metis–unstructured
graph partitioning and sparse matrix ordering system,
version 2.0. 1995.

[39] F. Kerouh. A no-reference blur image quality measure
based on wavelet transform. IJDIWC 2012.

[40] J. Kiefer and J. Wolfowitz. Stochastic estimation of
the maximum of a regression function. The Annals of
Mathematical Statistics, 1952.

[41] Nate Koenig and Andrew Howard. Gazebo. ”http:
//gazebosim.org/”, 2009.

[42] Paul Lamere, Philip Kwok, Evandro Gouvea, Bhiksha
Raj, Rita Singh, William Walker, Manfred Warmuth,
and Peter Wolf. The CMU sphinx-4 speech recognition
system. In ICASSP 2003.

[43] Man-Lap Li, Ruchira Sasanka, Sarita V Adve, Yen-
Kuang Chen, and Eric Debes. The alpbench benchmark
suite for complex multimedia applications. In IISWC
2016.

[44] Fan Long, Vijay Ganesh, Michael Carbin, Stelios
Sidiroglou, and Martin Rinard. Automatic input recti-
fication. In ICSE 2012.

[45] Randy Mackay. Ardupilot. ”http://ardupilot.org/”, 2007.
[46] J. MacQueen. Some methods for classification and

analysis of multivariate observations. In Proceedings of

134

the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics, 1967.

[47] Lorenz Meier. Px4 autopilot. ”http://px4.io/”, 2009.
[48] Peter Merz and Bernd Freisleben. A genetic local search

approach to the quadratic assignment problem. In ICGA
1997.

[49] Barton P. Miller, Louis Fredriksen, and Bryan So. An
empirical study of the reliability of unix utilities. Com-
munications of the ACM, 1990.

[50] Andrew Moore. Cross-validation for detecting and pre-
venting overfitting, 2001.

[51] Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran
Popovic, and Emanuel V. Todorov. Interactive control
of diverse complex characters with neural networks. Ad-
vances in Neural Information Processing Systems, 2015.

[52] Ramanathan Narayanan, Berkin Özisikyilmaz, Joseph
Zambreno, Gokhan Memik, and Alok Choudhary.
Minebench: A benchmark suite for data mining work-
loads. In IISWC 2006.

[53] K A Abdul Nazeer, S D Madhu Kumar, and M P
Sebastian. Enhancing the k-means clustering algorithm
by using a o(n logn) heuristic method for finding better
initial centroids. In EAIT 2011.

[54] K A Abdul Nazeer and M P Sebastian. Improving
the accuracy and efficiency of the k-means clustering
algorithm. In WCE 2009.

[55] Xia Ning and George Karypis. Slim: Sparse linear
methods for top-n recommender systems. In ICDM 2011,
2011.

[56] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst,
and Thomas Ball. Feedback-directed random test gener-
ation. In ICSE 2007.

[57] William R Pearson and David J Lipman. Improved tools
for biological sequence comparison. PNAS 1998.

[58] DOTREE Plotree and DOTGRAM Plotgram. Phylip-
phylogeny inference package (version 3.2). Cladistics,
1989.

[59] PX4. ”https://drive.google.com/open?id=
0BxgPTM7nEUyCYnRxS2FSN2JRbEE”, 2018.

[60] J Ross Quinlan. C4. 5: programs for machine learning.
[65] M. Stone. Cross-validatory choice and assessment of

statistical predictions. Journal of the Royal Statistical
Society. Series B (Methodological), 1974.

1993.
[61] Raj Reddy. An4 database. ”http://www.speech.cs.cmu.

edu/databases/an4/”, 1991.
[62] Michael F Ringenburg, Adrian Sampson, Luis Ceze, and

Dan Grossman. Profiling and autotuning for energy-
aware approximate programming. In WACAS 2014.

[63] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive
software: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems,
2009.

[64] James C. Spall. Multivariate stochastic approximation us-
ing a simultaneous perturbation gradient approximation.
IEEE Transactions on Automatic Control, 1992.

[66] Kevin Streit, Johannes Doerfert, Clemens Hammacher,
Andreas Zeller, and Sebastian Hack. Generalized task
parallelism. TACO, 2015.

[67] Dinda Findler Swaine, Tew and Matthew Flatt. Back
to the futures: incremental parallelization of existing
sequential runtime systems. In ACM Sigplan Notices,
2010.

[68] Ardupilot Tuning. ”http://ardupilot.org/copter/docs/
tuning.html”, 2017.

[69] PX4 Tuning. ”https://docs.px4.io/en/advanced config/
pid tuning guide multicopter.html”, 2017.

[70] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and
Eero P. Simoncelli. Image quality assessment: From error
visibility to structural similarity. IEEE Transactions on
Image Processing, 2004.

[71] WBTuner. Wbtuner source and supplementary material.
”https://github.com/cgo2019/WBTuner”, 2018.

[72] R. Clint Whaley and Jack J. Dongarra. Automatically
tuned linear algebra software. In SC 1998.

[73] Madhu Yedla, Srinivasa Pathakota, and T M Srinivasa.
Enhancing k-means clustering algorithm with improved
initial center. IJCIT 2010.

[74] Fang Yuan, Zeng-Hui Meng, Hong-Xia Zhangz, and
Chun-Ru Dong. A new algorithm to get the initial
centroids. In Proceedings of the 3rd International Con-
ference on Machine Learning and Cybernetics, 2004.

[75] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. Learning
deep control policies for autonomous aerial vehicles with
mpc-guided policy search. In ICRA 2016.

135

