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Abstract
Smartphone apps have changed the way we interact with
online services, but highly specialized apps come at a
cost to privacy. In this paper we will demonstrate that
a passive eavesdropper is capable of identifying fine-
grained user activities within the wireless network traf-
fic generated by apps. Despite the widespread use of
fully encrypted communication, our technique, called
NetScope, is based on the intuition that the highly spe-
cific implementation of each app leaves a fingerprint on
its traffic behavior (e.g., transfer rates, packet exchanges,
and data movement). By learning the subtle traffic be-
havioral differences between activities (e.g., “browsing”
versus “chatting” in a dating app), NetScope is able to
perform robust inference of users’ activities, for both
Android and iOS devices, based solely on inspecting IP
headers. Our evaluation with 35 widely popular app ac-
tivities (ranging from social networking and dating to
personal health and presidential campaigns) shows that
NetScope yields high detection accuracy (78.04% preci-
sion and 76.04% recall on average).

1 Introduction
Smartphone apps have replaced web browsers for inter-
acting with many online services (e.g., media streaming,
social networking, lifestyle, and finances) [23]. How-
ever, these highly specialized apps leave behind distinct
traces of their activities in wireless network traffic. In
this paper, we will demonstrate that a passive eaves-
dropper is capable of identifying fine-grained user ac-
tivities within apps, despite the use of traffic encryption,
based solely on inspecting IP packet headers and meta-
data. This capability highlights new challenges in secu-
rity and privacy: For example, the inference of a user’s
in-app activities can reveal highly sensitive information
based on the nature of many apps, such as those for adult
dating (e.g., frequently browsing versus chatting with
matches on the Ashley Madison app) or personal health
(e.g., looking up nearby HIV clinics).

Prior efforts in smartphone traffic analysis have de-
veloped tools for finger-printing mobile phones or indi-
vidual apps [7, 11, 29, 44, 46] or modeling smartphone
usage behavior [14, 27, 31, 36, 43]. These often require
prior physical access to the devices of interest [14] and
many only perform traffic-content signature matching
[11, 27, 44, 46] or protocol identification [36]. However,
nearly all apps today make use of (encrypted) SSL/TLS
communication, and thus packet content analysis (e.g.
DPI) and protocol identification reveal little information
about smartphone apps. More importantly, because of
user mobility, apps may only perform a portion of their
communication while connected to any single Wi-Fi net-
work — giving eavesdroppers only a small window of
(encrypted) traffic to inspect. In fact, many existing solu-
tions [7,11,29,43,44,46] will miss an app if its signature
does not occur in that window. We call this the transient
connectivity challenge.

In this paper, we overcome these challenges and show
that even a small window of encrypted traffic can reveal
an app’s semantic activities. Intuitively, an app’s highly
customized implementation generates distinctive traffic
patterns (e.g., transfer rates, packet exchanges, and data
movement) for each of that app’s activities. We call this
the activity’s traffic behavior. For example, the Facebook
app exhibits a much different traffic behavior while the
user is reading posts versus posting a new status update,
which differs further from the traffic behavior of tweet-
ing via the Twitter app. By leveraging traffic behavioral
clues, we can achieve fine-grained monitoring of a user’s
actions, without inspecting the packets’ contents.

We present NetScope, a technique that utilizes traf-
fic behavioral clues to automatically build a detector
for smartphone (both Android and iOS) app activities.
The use of NetScope is intuitive: First, an eavesdrop-
per performs offline training with the apps of interest,
during which NetScope automatically builds models of
the apps’ human-observed, semantic activities from the
measured traffic behaviors. NetScope requires no packet



content and no access to/knowledge of any target (vic-
tim) devices. The traffic measurements are converted to
feature sets, and a behavioral feature clustering method
is used to isolate similar behaviors. The most distinct
behaviors are learned by two complementary machine
learning models which NetScope packages into a detec-
tion module to be deployed at Wi-Fi access points (or
other network traffic collection devices) for lightweight,
online monitoring of users’ activities.

We have evaluated NetScope in a lab deployment
involving 7 different users with 2 iPhones and 5 dif-
ferent Android phones. The 35 subject app activities
range from generic apps (e.g., Facebook, YouTube) to
highly specialized apps for dating (e.g., OkCupid, Ash-
ley Madison), health (e.g., HIV monitoring), and politi-
cal campaigns (those of Bernie Sanders and Ben Carson).
NetScope is shown to detect this variety of activities with
high accuracy. To the best of our knowledge, NetScope is
among the first to enable smartphone app activity eaves-
dropping from IP headers only and, by doing so, reveal
new privacy implications of using specialized, privacy
sensitive apps via public/monitored Wi-Fi networks.

2 Challenges and Solution Overview
Traditional (non-smartphone) traffic analysis techniques
rely on deep packet inspection (DPI) [10,16,28], protocol
identification [6, 20, 34, 35] and, more recently, finger-
printing encrypted website-traffic [4, 15, 21, 24, 33] and
detecting protocols post-encryption [39, 42]. Unfortu-
nately, recent studies [11, 31, 43, 44] have shown that the
new paradigms of mobile app network communication
limit their applicability.

For privacy, apps direct all traffic through SSL/TLS
connections. Hence traffic signatures and DPI cannot
be applied to the majority of mobile apps, and identi-
fying specific values within an app’s traffic is impossi-
ble. Further, as observed in [31,43], apps’ traffic follows
vastly different patterns (e.g., persistent, with both server
and client tracking semantic context and state) than that
of HTTPS traffic, so encrypted web-traffic fingerprint-
ing techniques [4,15,33] would be unable to interpret an
app’s traffic. Still, some post-encryption protocol detec-
tion tools could apply to app protocols [35, 39, 42], thus
we are motivated to enable much more fine-grained de-
tection of semantic user-actions within apps’ traffic.

Prior work has assumed that apps may be identified
by the domain name or IP addresses with which they
communicate [7, 36]. However, this simple heuristic is
too coarse-grained and error-prone. Many services are
hosted in commercial clouds (e.g., many of our test cases
only use Microsoft Azure). Moreover, cloud-hosted ser-
vices make use of load balancers, making it impossible
to map back-end server’s IP addresses to services. Most
importantly, NetScope’s goal is not just to identify the
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Figure 1: NetScope models each server transaction’s
fine-grained traffic behavior separately.

app, but to identify actions within the app, which is im-
possible via only IP/hostname resolution.

Further, mobile apps may only perform a portion of
their network communication over any single wireless
network. This is because smartphones may switch be-
tween the cellular network and in-range Wi-Fi networks
seamlessly. In the past, network communications were
modeled as automata with state transitions based on traf-
fic patterns [6]. However, this is no longer effective
for apps, because a single network may only observe a
subset of an app’s traffic (missing the beginning, end,
or both). Essentially, the eavesdropper “drops in” on
the middle of the app’s communication. We call this
the transient connectivity challenge. To the best of our
knowledge, no existing traffic analysis tools consider
(nor overcome) this challenge.

2.1 Traffic Behavior-Based Inference
In light of the above challenges, we propose modeling
the traffic’s fine-grained behaviors. Intuitively, each app
is implemented differently, as determined by its seman-
tics. We observe that such implementation differences
induce activity-specific traffic behaviors. Each activ-
ity within an app (e.g., posting to versus reading Face-
book) will generate discernible differences in their traf-
fic. NetScope leverages such differences to infer the
user’s activities using app behavior-based traffic mod-
els. To build these models, NetScope decomposes the
traffic based on several design features of modern apps’
network connections. As a running example, Figure 1
shows how NetScope observes an app’s network behav-
ior from traffic handled by a Wi-Fi access point.

During our app profiling, we observed that each ac-
tivity will connect to multiple servers in parallel, each
with a specific purpose. For simplicity, Figure 1 shows
one activity connecting to 3 servers: gateway, ad, and
CDN servers. The app’s communication with each
server behaves differently based on that server’s pur-
pose. NetScope leverages this per-server behavior to
build models for each server transaction (a packet stream
between the device and a remote server) independently,
as shown in Figure 1. In Figure 1 each server trans-
action’s behavior is simplified as a curve, but in fact,



NetScope uses 26 metrics per measurement to model the
traffic’s behavior (Section 3).

During offline training, NetScope makes fine-grained
(5 ms) measurements of each server transaction’s be-
havior. These measurements are grouped based on their
similarity, and the most unique behaviors are chosen to
build models. Intuitively, NetScope aims to detect the
server transactions by matching models of their most dis-
tinctive behaviors. Because the measurements are taken
over such small time intervals, each behavior model rep-
resents a fine-grained (sub-second) portion of a trans-
action’s traffic. During online detection, this allows
NetScope to overcome the transient connectivity chal-
lenge because each model can match only a small subset
of the app’s traffic.

3 NetScope Design
NetScope’s training is performed offline once to build
traffic behavior models. To collect training data,
NetScope will listen on a training Wi-Fi access point
(to which only the training device is connected) and log
the IP headers and relative timestamps for all packets
it observes. Training is conducted such that the user
(eavesdropper) only needs to perform a semantic activ-
ity (e.g., viewing a YouTube video) on the training de-
vice and then give NetScope the name of the activity that
is being modeled (e.g., “YouTube play”). Note also that
such training could be more automatic via existing smart-
phone UI exercising utilities [1, 2].

3.1 Feature Extraction
A behavior model is a representation of how that traf-
fic “moves” through the access point per server trans-
action. NetScope partitions the traffic log into server
transactions containing all the IP headers (in temporal
order) which the device sent to/received from each re-
mote server. Once the traffic log is partitioned into
server send/receive transactions, each transaction’s be-
havior will be modeled separately. However, because of
the transient connectivity challenge, we cannot assume
that the entire transaction will be observed during online
detection. Thus, instead of computing the behavior of the
entire transaction, we divide it into behavior measure-
ments — a measurement of the traffic’s behavior over a
very small time window (5 ms in our implementation).

Lastly, care is taken when choosing metrics for the be-
havior measurements. In the next section, these metrics
will be the feature sets for NetScope’s machine learn-
ing algorithms, and thus they must be comparable be-
tween any observed network traffic. For example, packet
counts would be misleading because the same activity
may transmit data of variable sizes (e.g., long versus
short text messages). Thus we designed the following
metrics (26 data points total) to measure the traffic’s im-
plicit behaviors that are not explicitly observable from

any packet content. Each of the following metrics is
computed for every behavior measurement (i.e., 5 ms
time interval) within the server transactions.
Send and Receive Average Inter-Packet Times are two
measurements which consider how quickly the server is
sending packets to the app and vice versa. NetScope
computes an average of the time differences between ev-
ery consecutive packet in the send and receive transac-
tions:

AvgIPT (P) =
∑
|P|−1
i=1 (tsi+1− tsi)

|P|−1
(1)

where P is the set of sent or received packets and tsi is
the timestamp of the ith packet. Intuitively, these mea-
sure the transaction’s “bursts” (i.e., many adjacent pack-
ets versus few distant packets).
Send and Receive Packet Count Ratios measure the ratios
of the total number of packets that the app sends to and
receives from the server (i.e., how “chatty” the server and
app are). Specifically, if the app sends csend packets to
the server and receives crecv packets then the send and
receive ratios are calculated as:

PCRsend =
csend

csend + crecv
, PCRrecv =

crecv

csend + crecv
(2)

Note that ratios, rather than the raw counts, allow the
measurement to be generalizable to all activities we
model.
Send and Receive Data Size Ratios measure the ratios of
the total data sent to and received from the server. Un-
like the transaction’s “chattiness”, this measurement rep-
resents how much data is flowing between the two. For
an app which sends msend bytes of data and receives mrecv
bytes, the ratios are calculated as:

DSRsend =
msend

msend +mrecv
, DSRrecv =

mrecv

msend +mrecv
(3)

Comparing these metrics to the previous two reveals
a significant amount about the activity, e.g., streaming
video from the server (low chat, heavy download) versus
instant messaging (high chat, similar data ratios).
Packet Size Classification considers the distribution of
data sizes. For example, a transaction with 3 1024-byte
packets should be modeled differently than 12 256-byte
packets. To capture this relation, we divided the pos-
sible single packet size range into 10 disjoint ranges.
NetScope computes the number of packets sent and re-
ceived within the measurement window with sizes within
each range and then normalizes by the total number of
sent or received packets, respectively. The resulting 20
ratios model how the data is distributed among the pack-
ets being sent and received.

3.2 Building Behavioral Models
The majority of the behavior measurements will be sim-
ilar across multiple activities, but each activity also con-
tains enough unique behaviors to be distinguishable. Iso-
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Figure 2: NetScope models each activity’s unique traffic behaviors with two complementary machine learning models.

lating these unique behaviors within the behavior mea-
surements (tens of thousands of them) can be modeled
as a data mining/clustering problem. NetScope uses the
K-means clustering (unsupervised machine learning) al-
gorithm to partition the input feature sets into K clus-
ters based on their distance from each other and the clus-
ters’ centers. The resulting clusters contain disjoint sub-
sets of the behavior measurements. Among these, some
are tightly clustered (the measurements within are highly
similar) and some are loosely clustered (only somewhat
similar to each other, but less similar to the other clus-
ters). In this way, the clusters reveal which behavior
measurements are most distinctive.

The K-means algorithm requires K (the number of
clusters) as input. However, NetScope cannot know a
priori how many clusters will be needed to identify the
unique feature sets (a common problem in complex data
mining applications). Thus NetScope relies on an incre-
mental clustering algorithm to find an appropriate num-
ber of clusters based on the observed accuracy. Given
N feature sets, NetScope runs the K-means clustering
algorithm starting at K = N

8 until K = N
4 in 100 itera-

tions. Each run yields new clusters and an average iner-
tia, which measures how tightly the feature sets are clus-
tered (the within-cluster sum of squares). NetScope plots
the inertia values and performs a change point analysis
to determine if the increasing K value is no longer yield-
ing significant inertia improvements. If a change point is
never detected, NetScope stops iterating at K = N

4 which,
through experimentation, we find to be a reasonable cut-
off (i.e., 1 cluster for every 4 feature sets). When a suit-
able K value is found, NetScope records which cluster
each feature set belongs to. We call these clusters of be-
havior measurements traffic behavior models.

Figure 2 shows a simplified example: Two activities
with one server transaction each. The network traffic
yields 6 behavioral measurements, and of those, 4 are
unique (both activities exhibit behavior B). Clustering
these behavior measurements with K = 5 isolates the 4
unique behaviors. Note that behavior models are not ac-
tivity or server transaction specific. As Figure 2 shows,
they are derived from behavior measurements taken from
every training activity. This makes behavior models

more general (similar behaviors exhibited by different
apps will share the same model) and more accurate com-
pared to training separate cluster models. Intuitively, if
NetScope can compare and contrast more behaviors, then
each behavior model will be more precise.

NetScope must connect the generic behavior models to
the activity(ies) which exhibit them. However, because
of transient connectivity, NetScope cannot assume that it
will later observe the exact same set of behaviors mod-
eled. Thus, the models of each activity must allow for
some behaviors to be missing during detection. Further,
we want to use a model which will give more weight
to unique behaviors and less weight to behaviors which
are common among multiple activities. In Figure 2, the
behavior models for A and C are stronger indicators of
Activity 1, compared to the behavior model for B.

NetScope uses a multi-class support vector machine
(SVM) — a widely used supervised machine learning
method focusing on high classification accuracy with
many possible observations. NetScope constructs a fea-
ture matrix: each row consisting of the app activity labels
and binary features (i.e., values 0 or 1) representing if any
server transaction within this activity produced the given
behavior model. For the K identified behavior models,
the matrix columns 2 through K+1 are each assigned 1
or 0 to represent if that activity produced that behavior
model. The trained SVM model captures the relation
that: given a set of behavior models, the model deter-
mines which activity produces a similar set of behaviors.

Notice that we did not explicitly separate the behav-
ior models by server transaction, because the multi-class
SVM will implicitly capture this relationship. Consider
Figure 2: For Activity 1 assume that behaviors A and C
are exhibited by two separate server transactions. The
multi-class SVM model for Activity 1 will be trained
with behaviors A, B, and C marked 1. As desired, this
captures the relationship that detecting behaviors A and
C lead to a more confident match of App 1 than just de-
tecting A or C alone.

NetScope packages the cluster model and SVM into a
detection module to be distributed at Wi-Fi access points
to monitor smartphones for the trained behaviors.



3.3 User Activity Detection
The NetScope detection module takes as input a stream
of IP packet headers and outputs labels for which activ-
ity behaviors it observes in the traffic. NetScope inspects
traffic from different phones separately. For each packet
that the detection module processes, it builds a set of
server transactions. If the packet belongs to an on-going
server transaction, then NetScope updates that transac-
tion’s behavior measurements. Otherwise, a new server
transaction is registered and NetScope waits to collect
enough packets for the first behavior measurement to be
computed (as in Section 3.1). NetScope then determines
which behavior model matches each new behavior mea-
surement. To do this, NetScope consults the trained clus-
ter model: Given an unknown behavior measurement,
the cluster model will report which cluster the new be-
havior would fall in. At this point, NetScope does not
consider if this measurement is not a known behavior
(i.e., traffic which we did not train for), instead this will
be handled naturally by the multi-class SVM model later.

Finally, for each new behavior model in the traffic,
NetScope attempts to match the known set of concurrent
behaviors with an activity’s model. For this, NetScope
builds a test feature set from the observed behavior mod-
els, and this unlabeled row is tested with the multi-class
SVM model. This yields a list of probabilities represent-
ing how well each training matrix row matches the test-
ing data. If no row matches above 60% then NetScope
discards the result and continues collecting traffic. We
chose a cutoff of 60% because we find that true matches
occur with above 85% confidence, but mismatches (i.e.
traffic we did not train for) result in less than 50%
confidence. If any rows match above the cutoff, then
NetScope reports the best matching row’s label as a de-
tection.

4 Evaluation
We have implemented NetScope in Python (∼7K lines of
code). Data collection is performed using the tcpdump

utility and processed via the dpkt library [12]. For
NetScope’s machine learning models we employ the
widely-used scikit-learn library [25].

4.1 Training and Deploying NetScope
We conducted the training as described in Section 3 us-
ing one Samsung Galaxy S4 phone and a set of 35 differ-
ent user activities which we aimed to detect, summarized
in Table 1. We chose the apps in Table 1 based on two
criteria: 1) their top ranking among free apps in both the
Google Play Store and Apple App Store or 2) their highly
specialized, privacy sensitive activities. We repeated data
collection for each activity 4 times. This processing took
52 minutes from start (input all collected training data)
to finish (output trained NetScope detection module).

Deployment Setup To recreate a typical rogue Wi-Fi
hotspot scenario, we set up a new Wi-Fi access point in
our lab (for members of this project only). We installed
packet header logging functionality on the access point
and set this as the default Wi-Fi network for the 7 project
members’ personal smartphones: an HTC Desire 500,
LG G2, LG G3, and 2 Samsung Galaxy S4s, as well as
1 iPhone 6 and 1 iPhone 6 Plus. Each project member
interacted with the test apps to generate a variety of ac-
tivities (along with any typical background traffic gener-
ated by each device) in the network trace for evaluation.
In addition, four members’ laptops solely used the Wi-
Fi over the deployment period, but as Section 3.3 men-
tioned, NetScope ignored these devices during its oper-
ation. After collecting a sufficiently large Wi-Fi trace
(containing a total of 667 app activities to detect), we re-
played the entire trace to the NetScope detection module
(as if the packets were arriving in real time) and recorded
its detection results.

4.2 Detection Results
To obtain ground truth (i.e., the activities that were ac-
tually performed), all project members logged the date
and time they performed any of the 35 activities from
Table 1 (this was done via a script added to the users’
smartphones). We processed these logs and NetScope’s
output to measure the detection module’s accuracy.

Table 2 presents NetScope’s detection results across
all 7 smartphones. Columns 1, 2, and 3 show the ac-
tivity, ground truth (number of times that the users per-
formed that activity), and the number of times NetScope
correctly detected that activity, i.e., the true positives
(TP), respectively. Column 4 shows the number of times
NetScope misclassified that activity as a different activ-
ity, and the times NetScope did not detect that activity
occurring (not misclassified) is shown in Column 5. The
sum of Columns 4 and 5 is the false negative count (FN).
Column 6 shows the false positive (FP) count (other ac-
tivities classified as that row’s activity). Precision and
recall are shown in Columns 7 and 8, respectively.

Table 2 shows that NetScope achieves very high de-
tection accuracy. Column 7 shows that NetScope’s aver-
age precision is 78.04%. This denotes that among all of
NetScope’s identifications, 78.04% of them are correct.
Average recall is also high: 76.04%. This can be under-
stood as 76.04% of the activity instances in the network
traffic were correctly detected.

Table 2 shows that NetScope is sensitive enough to ac-
curately distinguish between similar activities in differ-
ent apps. For example, listening to music on the Pandora
and Spotify apps both have precision above 76% and re-
call above 72%. From Table 2 we can see that even these
similar activities provide distinguishing characteristics in
their network behaviors.



Category App User Activity (Detection Target) Training Label Dominant Network Behavior

News & Politics
CNN News Browse and read news articles CNN Read

Download content, bursty

Bernie Sanders 2016 Read stances and news updates Sanders Read
Ben Carson 2016 Read stances and news updates Carson Read

Personal Health HIV Atlas Lookup treatment information HIV Info
Lookup HIV test clinics HIV Clinics

Social

Facebook Read Facebook Feed Facebook Feed
Post to Facebook Facebook Post Upload content

Twitter Post new tweet Twitter Tweet
Read tweets Twitter Read Download content, steady

Instagram Browse Posts Instagram Browse Download content, bursty
Post to Instagram Instagram Post Upload content

Snapchat Photo Chat on Snapchat Snapchat Chat

Interactive
(bursty upload and download)Dating

Tinder Browse potential matches Tinder Browse
Chat with connections Tinder Chat

OkCupid Browse potential matches OkCupid Browse
Chat with connections OkCupid Chat

Ashley Madison1 Browse potential matches Ashley Madison Browse

Travel & Local
Google Maps Search location and view maps Google Maps

Yelp Browse Yelp Yelp Browse Download content, steady
Search Yelp Yelp Search Download content, bursty

Shopping Amazon Browse online store Amazon Browse

Communication

Facebook Messenger Chat with friends Messenger Chat

InteractiveSkype
Video call with friend Skype Video
Voice call with friend Skype Voice
Message chat with friend Skype Chat

Gmail Read email Gmail Read Download content, bursty
Send email Gmail Send Upload content

WhatsApp Message chat with friend WhatsApp Chat
Interactive

Media Streaming

Spotify Music Navigate through playlists Spotify Navigate
Listen to music Spotify Listen Download content, steady

YouTube Watch videos YouTube Play
Search and browse videos YouTube Navigate Interactive

Netflix Browse through videos Netflix Browse Download content, bursty
Watch Videos Netflix Watch Download content, steadyPandora Listen to music Pandora Listen

Table 1: Training Activities for Various Apps with Diverse Network Behaviors.

Detection Time As an online eavesdropping tool, it
is important that the detection module be light-weight
and efficient in order to produce near real-time results.
On average the classifier took 0.62 seconds to produce
a result from input behavior measurements. Thus, any
bottleneck for detection comes from collecting behav-
ior measurements to match a behavior model. Through
measurements performed during online deployment, we
found that it took between 50 and 300 behavior measure-
ments to match the activity models reliably. Thus it took
between 0.25 seconds to 1.5 seconds of traffic observa-
tion to yield a result.

4.3 Device/Platform-Generic Detection
Surprisingly, these results were obtained via the
NetScope detection module trained with only one Sam-
sung Galaxy S4: A NetScope detection module is found
to be cross-platform, working with both iPhone and An-
droid traffic. To get a better idea of how NetScope per-
formed with each device, we calculated the per device
detection results.

Table 3 shows that, although being trained with only
the Samsung Galaxy S4, NetScope performs well across
all devices and platforms. Interestingly, we notice a

1The Ashley Madison app charges users for sending chat messages,
so we excluded that activity from our training data set.

“step-wise” effect in precision as the device’s operating
systems differ more from the training device’s. Both An-
droid 4.4.2 devices perform the best: the LG G3’s pre-
cision is 89.6% and the training Samsung Galaxy S4’s
is 93.2%. The most closely related OS is Android 5.0,
which also shows good results: the LG G2’s precision
is 74.29% and the (not training) Samsung Galaxy S4’s
is 74.07%. The remaining (most different) cases exhibit
precisions between 43.43% and 72.04%. Note also that
we purposely trained NetScope with a very restrictive
data set (only 1 device and 4 repetitions of each activ-
ity) to evaluate the power of generalizing its signatures.
In a real-world deployment, it would make more sense
to train with data from each platform (or at least a va-
riety of platforms) which one intends to observe during
detection.

4.4 User Privacy Implications
NetScope’s high detection accuracy raises serious pri-
vacy implications. While we by no means condone such
applications, NetScope can be used to infer user privacy-
sensitive information, especially from highly specialized
personal apps.

To highlight this privacy impact, we have included
HIV Atlas (one of the most popular HIV management
apps) in our test cases. We tested NetScope with the



App Activity Ground Truth TP Misclassify Miss FP Precision Recall
CNN Read 33 19 14 0 10 65.52% 57.58%
Sanders Read 25 25 0 0 1 96.15% 100.00%
Carson Read 21 13 8 0 2 86.67% 61.90%
HIV Info 24 13 8 3 0 100.00% 54.17%
HIV Clinics 24 19 5 0 8 70.37% 79.17%
Facebook Feed 36 15 21 0 20 42.86% 41.67%
Facebook Post 24 16 6 2 11 59.26% 66.67%
Twitter Tweet 24 17 7 0 2 89.47% 70.83%
Twitter Read 10 10 0 0 2 83.33% 100.00%
Instagram Browse 11 6 5 0 15 28.57% 54.55%
Instagram Post 11 4 7 0 0 100.00% 36.36%
Snapchat Chat 11 8 3 0 9 47.06% 72.73%
Tinder Browse 27 22 4 1 0 100.00% 81.48%
Tinder Chat 25 20 4 1 1 95.24% 80.00%
OkCupid Browse 19 17 2 0 7 70.83% 89.47%
OkCupid Chat 21 20 1 0 0 100.00% 95.24%
Ashley Madison Browse 22 21 1 0 1 95.45% 95.45%
Google Maps 34 34 0 0 3 91.89% 100.00%
Yelp Browse 11 8 3 0 5 61.54% 72.73%
Yelp Search 11 5 6 0 10 33.33% 45.45%
Amazon Browse 11 4 7 0 1 80.00% 36.36%
Messenger Chat 19 17 2 0 14 54.84% 89.47%
Skype Video 9 9 0 0 0 100.00% 100.00%
Skype Voice 9 9 0 0 0 100.00% 100.00%
Skype Chat 9 9 0 0 8 52.94% 100.00%
Gmail Read 11 11 0 0 5 68.75% 100.00%
Gmail Send 11 11 0 0 0 100.00% 100.00%
WhatsApp Chat 11 11 0 0 6 64.71% 100.00%
Spotify Navigate 18 18 0 0 2 90.00% 100.00%
Spotify Listen 16 13 3 0 4 76.47% 81.25%
YouTube Play 44 16 26 2 2 88.89% 36.36%
YouTube Navigate 42 30 12 0 14 68.18% 71.43%
Netflix Browse 11 4 7 0 0 100.00% 36.36%
Netflix Watch 11 9 2 0 4 69.23% 81.82%
Pandora Listen 11 8 3 0 0 100.00% 72.73%

Table 2: App Activity Detection Results.
Device OS Version Ground Truth TP Misclassify Miss FP Precision Recall
LG G3 Android 4.4.2 125 112 13 0 13 89.6% 89.6%
LG G2 Android 5.0 35 26 9 0 9 74.29% 74.29%
HTC Desire 500 Android 4.1.2 95 67 26 2 26 72.04% 70.53%
Samsung Galaxy S4 Android 5.0 88 60 21 7 21 74.07% 68.18%
Samsung Galaxy S4 (training) Android 4.4.2 147 137 10 0 10 93.2% 93.2%
iPhone 6 iOS 8 78 46 32 0 32 58.97% 58.97%
iPhone 6 Plus iOS 8 99 43 56 0 56 43.43% 43.43%

Table 3: App Activity Detection Results Calculated Per-Device.

two dominant features of HIV Atlas: looking up treat-
ment information and looking up nearby HIV test clin-
ics (Rows 4–5 in Table 2). NetScope’s ability to recog-
nize individual in-app activities is critical here: Identify-
ing a person reading general HIV information is far less
probative than monitoring someone searching for nearby
HIV test clinics. Now, consider a malicious user con-
necting to the same Wi-Fi and sniffing all the IP pack-
ets. By correlating the inferred app activities with device
type/name, connection times, and even visual observa-
tions, the eavesdropper could easily identify the individ-
ual who performed the HIV app activities.

Beyond targeted eavesdropping, NetScope’s detection
capability might be abused for broader violations of pri-
vacy. For example, given the recent studies linking
the degree of casual dating app use and the spread of

sexually transmitted diseases (STDs) [3, 26], authorities
might consider secretly tracking how actively commu-
nity members use these apps (e.g., passively browsing
potential matches versus frequently chatting with their
connections). Users are unlikely to agree to such moni-
toring. Table 2 shows that Tinder, OkCupid, and Ashley
Madison (possibly the activity that users most want to
keep secret) all have high detection accuracies with an
average of 92.3% precision and 88.33% recall among all
5 of these apps’ activities.

Another concerning scenario, is employee discrimina-
tion on the basis of political affiliation (which is legal
in most states) [38]. The use of highly specialized apps,
such as the Bernie Sanders and Ben Carson presidential
campaign apps (Rows 2–3 in Table 2), reveal such po-
litical affiliations. These cases have reasonably high de-



tection accuracies: The Bernie Sanders app has only 1
false positive result yielding 96.15% precision and 100%
recall; and the Ben Carson app has only 8 misclassifica-
tions yielding 86.67% precision and 61.9% recall.

5 Discussion

Imitation Attacks Like all statistical learning methods,
NetScope can be vulnerable to imitation attacks — an
attacker may invest a significant amount of effort to “re-
play” the exact traffic sent between a benign app and the
servers it connects to. If the imitation was nearly identi-
cal to the original benign app, then NetScope may clas-
sify that device as performing the imitated app activities
when in fact the user was not.

Traffic Obfuscation Defense To mitigate the privacy
impacts highlighted in Section 4.4, developers may wish
to degrade NetScope’s effectiveness by adding random-
ness to an app’s traffic behavior. This would require non-
trivial changes to the app and servers involved. Obfus-
cated behaviors need to be generated for each run of that
app to prevent NetScope from approximating the traffic
during training. Because NetScope’s models are server
transaction specific, an app would need to obfuscate its
traffic behavior for multiple servers that it connects to
— incurring additional computation and network traffic
overheads.

6 Related Work
Analysis of Encrypted Network Traffic Encrypted
traffic has been the target of network analysis research
for some time. A primary goal of this field of research
has been fingerprinting website visits in encrypted traf-
fic [4, 15, 17, 19, 21, 24, 30, 33, 42]. Several of these
works have employed statistical analysis [4,30,39], naı̈ve
Bayes classifiers [17,19,22], and machine learning tech-
niques [18,24]. Further, a recent study by Dyer et al. [13]
found that traffic analysis countermeasures were still in-
sufficient to prevent eavesdropping. Besides website fin-
gerprinting there are many other works which analyze
encrypted network traffic to uncover numerous other in-
formation leakages. One notable direction is the detec-
tion of languages, spoken words, or phrases in encrypted
VoIP traffic [37, 40, 41].

NetScope shares a goal with these works: expose an
information leak in secure communication. However, as
discussed in Section 2, the design and usage of smart-
phones introduces a number of new challenges to mobile
app traffic analysis.

Schneider et al. [28] extracted click-streams from pas-
sively monitored network traffic to identify user activ-
ities on social network sites. NetScope is also a pas-
sive network analysis tool which aims to detect user’s

activities, but the detection of website-based activities
differs significantly from in-app user activities. Later,
Verde et al. [32] proposed features which could track
users behind a NAT. NetScope is similar to this work in
that they both build and detect fingerprints from network
flows, but NetScope aims for a more fine-grained identi-
fication (user’s in-app activities). Also of note, Chen et
al. [5] found a number of side-channel leakages in web-
applications via traffic analysis which disclose sensitive
information about its users.

Zhang et al. [45] proposed identifying coarse-grained
user activities (e.g., web browsing, chatting, online gam-
ing) via passive monitoring of 802.11 wireless traffic
from laptops. Both this work and NetScope share similar
adversary models and techniques, but NetScope’s detec-
tion is significantly more fine-grained: detecting specific
apps and activities. As discussed in Section 2, this work
could hardly be ported to handle the challenges inherent
in smartphone traffic analysis.

Smartphone Network Traffic Analysis To understand
how smartphones were being used, many works aimed
to model phone usage behavior [9, 27, 31, 43]. Among
other features, ProfileDroid [36] analyzed network traf-
fic to model an Android’s usage. Falaki et al. [14] looked
at how traffic patterns affect a smartphone’s execution.
Xu et al. [43] performed a large-scale investigation of
apps’ network usage and traffic invariants. Tongaonkar
et al. [31] modeled app usage by tracking identifiers
in ad libraries through traffic analysis. Building from
these ideas, MAPPER [27] enforces per-app/user poli-
cies based on observed traffic patterns. Unfortunately,
these works either rely on analysis of unencrypted net-
work traffic [27, 31, 43], protocol identification [36], or
on-device monitoring tools [14]; making these solutions
poorly suited for spying on user’s activities.

Networkprofiler [11] followed by FLOWR [44] auto-
matically build traffic signatures of apps’ unencrypted
network communications. Unfortunately, modern apps
use encrypted communication. Stöber et al. [29] aimed
to identify the apps installed on an Android device by
monitoring that device’s network usage. NetScope builds
from this idea to leverage many more network traffic fea-
tures for much more fine-grained detection.

Most recently, Conti et al. [7, 8] found that the Face-
book, Gmail, and Twitter apps produce different network
patterns for several in-app activities. Both NetScope and
this work detect smartphone user activities, but this work
still relies on server name resolution and requires net-
work traffic to have similar temporal order to the traffic
signatures, which will hardly be the case due to the tran-
sient connectivity challenge.



7 Conclusion
Modern, highly specialized mobile apps leave behind fin-
gerprints on their wireless network traffic’s behavior. We
have presented NetScope, a tool that leverages traffic be-
havioral clues to detect in-app user activities. NetScope
automatically builds models for different activities from
their measured traffic behaviors. The models can then be
deployed in a NetScope detection module to perform in-
ference of user activities with high accuracy by observ-
ing only IP packet headers, for both Android and iOS
devices.
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